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ABSTRACT

By working in C* with potentials of the form a log u + s(u), u the square
of the distant to the origin, we obtain extremal Kahler metrics of non-
constant scalar curvature on the blow-up of C" at 0. We then show that
these metrics can be completed at oo by adding a CP*~!, and reobtain
the extremal Kahler metrics of non-constant scalar curvature constructed
by Calabi on the blow-up of CP" at one point. A similar construction

produces this type of metrics on other bundles over CP" !,

Let (M, J) be a complex n-manifold and g a Hermitian Riemannian metric on
M, that is to say, a metric such that w(X,Y) := ¢g(JX,Y) is skew-symmetric.
The metric is said to be Kahler if the 2-form w is closed, or equivalently, if
the almost-complex structure tensor J is parallel with respect to the metric
connection V. The differential form w is then called the Kahler form, and its
cohomology class [w] € H% (M) is called the Kahler class.

By complex multi-linearity, we may extend the metric g, the Levi-Civita
connection V and the curvature tensor R to the complexified tangent bundle
C® TM. Since C® TM decomposes into the *i-eigenspaces of J, CQTM =
T M @T%! M, we can express any tensor field or differential operator in terms
of the corresponding decomposition. If (2%,...,2") is a holomorphic coordinate
system on M, we get induced bases {3} and {a—{:;.: = %} for T1°M and

T M, respectively, and if, for example, we express the metric ¢ in terms of

Received March 1, 1992 and in revised form May 5, 1992

85



86 S. R. SIMANCA Isr. J. Math.

ij
! =95 o0
{1,...,n,1,...,7}, it follows from the Hermiticity condition that g;z = 5% =0,
and that w = wj;dzj Adz* = igj;dzj A dz*.
The Ricci form p is defined in terms of the Ricci tensor r of g by p(X,Y) =
r(JX,Y). It is the curvature of the anti-canonical line bundle k= := A" T1 M,

so that the components of the Ricci tensor are given by

i) o
this basis by setting g, : ), where the indices g, v range over

. 62
rE=-pg= —-W log det(g,37) -

The scalar curvature is, by definition, the trace o = rf = 2gjirj; of the Ricci

tensor, and can be conveniently calculated by using the formula
(1) 0w =2n p AP,

which follows from the Lefschetz decomposition of (1,1)-forms. For M compact,
An

using the fact that the metric volume-form is given by dvol, = w——', this has
n!

the remarkable consequence that
4w n—
/M 2 dVOl_q = (n_;l—)!C1 U [w]u( 1).

Since, on the other hand, / dvol, = -T%[w]u", we conclude that the average
scalar curvature is a topological J'nvan'ant., in the sense that it only depends on
the Kahler class [w] and the homotopy class of the complex-structure tensor J.

Let M|, be the set of all Kéhler metrics on M with fixed Kahler class [w].
Two metrics in this space will have Kahler forms which differ from one another
by 38y, where ¢ is a real valued function on M. This clearly indicates how to

topologize M(,}. A curve w* in this space, with w? = w, is thus given by
(2) w' = wij +18i850¢

where ¢, is a smooth valued function which can be taken as zero when t = 0.
The notion of extremal metric was introduced by Calabi [Ca2] as critical
points of the functional
My >R

g — agdvolg '
M
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If we consider a one-parameter family of metrics as in (2) with ¢; |=¢= 0 and

¥t |t=0= u, since the variation of o, is equal to
1 2
_E(A +2r-VVu,

where the dot denotes contraction, it follows, using the Bianchi identities, that

the derivative of S at ¢ in the direction of 9;35u is just
DS,(d:05u) = / 0,((30%)*80% Judvol,,
M

where 9% is the operator ¢ — (0¢)#, # the isomorphism of the complexified

cotangent and tangent bundles induced by g. The following result follows.

THEOREM 1 (Calabi [Ca2]): A Kahler metric is extremal iff the vector field
d* 0, is holomorphic.

It 1s then rather obvious that a constant scalar curvature Kéhler metric is
extremal and that the two type of metrics coincide if the manifold admits no
holomorphic vector fields.

We would like now to show examples of extremal metrics which do not have
constant scalar curvature. Such examples have been constructed by Calabi
[Cal] and live in the blow-up of CP" at one point. We hope that our approach
illuminates further Calabi’s construction, as some of the technicalities of his
construction are eliminated in the approach that we follow here.

We initially search for this kind of metrics on the non-compact manifold C*
and demand that they be U(n) symmetric. We then proceed as in [Si] and
consider a Kahler potential ¢ in C* which is only a function of u = z;Z; +... +

ZpZn. The (1,1)-form
w = i09¢

is the Kahler form of a Kahler metric. If we let the expression
W = "Vd' ANdF A dZP AdZE AL A d2" AdZ”
define the function V, then the Ricci form p is given by

p=—i00logV .
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The symmetry of our setting permits to carry the computations on 22 = 2% =

...=2z" =0, and as explained in [Si]* the scalar curvature equation (1) is just
) o§($ + ud) = —2¢(3 + u) — 2(n — 1)($ + ug),
where ¢ = log V. This is clea.rly equivalent to

d (auu¢n+2nun¢u 1¢)

(u¢)"
Consequently, the vector field 0% is
&zj — 1 d u"é" n n—-1 a
3#U—E¢+u¢$ E +u¢(u¢)ﬂdu( #" + 2nu"g ¢)

The metric will be extremal iff

d o
dugtup
from which it follows that d
(4) t_i;a = C (U¢),

for some constant c. The case ¢ = 0 was con81dered in [Si], taking advantage of
the formula above for 6. We concentrate here in the case where ¢ # 0, i.e., the
case of non-constant scalar curvature. Integration of (4), together with the use

of (3), results into the equation
d, . v d - d . d .
) 2g(h)+2n = DY L)+ olud) o (ud) = ~ATud),
for A a constant of integration. This equation can be written as
d n-—1 na __ n—1;
2 (¢" )+ o = —ACTE,

where ( = uci), n= mj), respectively. Thus,

¢

©) + 2(n+1)

where B is another constant of integration. If we now write V in terms of ¢ and

A -n
<2='—%<+B<1 )

its derivative, we conclude that

—u g (n—l)é_n—l
B

* The conventions used here are slightly different than the ones in [Si], thus ex-
plaining the differences in the equations.
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Plugging this into the previous expression and writing the result as an equation

for ¢, we obtain

2o (wm1¢) = n¢ ok gEs e = — e B

which itself produces

A

n+2 __ T
¢ 2n(n+1)

7 un-—l'__ n+ c n+1+B C,
for yet another constant of integration C.
In order to produce metrics in the blow-up of CP" at one point, we suppose

that ¢ is a function of the form
(®) #(u) = alogu +s(u), a >0,

where in principle we only required s(u) to be C? (later on we shall see that
equation (7) on such a function will imply that s is smooth). This will produce
a metric on the blow-up of C" at 0, a coordinate neighborhood of the manifold
in question. Notice that V = n!g&“'l(tﬁz + u¢) Then, if we set

3(0) =p, 30)=gq,

the constants A, B and C are completely determined by (5), (6), and (7) in

terms of these values. We list these results for convenience:

2n—1)(n—-2) 4q

A=222AR0 H,
n—la pz
__a _ q c 2
9) B= - (2(11 1)+ +2(n+1) )
__a _ s ¢ 2
C = 1(2(n 2)+p2a+2(n+2)a>

For ¢ as in (8) we have { = u¢ = a +us. If we write equation (7) in terms of
s and perform some simplifications, we obtain
¢ an+2 _ nd2 _ ntl .
nt 1)(n+2)((a+us) a (n+2)a™ " us)
—m((a + us)"t — @™t — (n 4+ 1)a"us)
+ ((a 4 us$)* — a™ — na" 'us) — ud((a + us)" ' —at).

(e +us)* Tuls=—
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Setting w = $ this becomes

_ (@ tuw)"t? — a™? — (n 4 2)a"H uw)

2(n + 1)(n + 2)u?(a + uw)"-1
_A((a + uw)**! — g™ — (n + 1)a"uw)
(10) 2n(n + 1)u?(a + uw)™~!
a(a +uw)* ! —a® — (n— 1)a" luw
u?(a + vw)r!

= f(u,w),
where we let the expression define the function f(u,w).

THEOREM 2: The blow-up of CP" at one point carries extremal metrics of

non-constant scalar curvature.

Proof: Let C" be an affine coordinate chart, and assume that the origin is the
blown-up point. Proceeding as above, we search for a potential of the form (8)
which will produce extremal metrics of non-constant scalar curvature. As the
function f(u,w) is smooth, the resulting equation (10) for w = $ has a unique
solution in a neighborhood of u = 0, provided one supplies an initial condition
w(0) = 5(0) = p. There is in fact one such solution which is smooth and defined
on a maximal domain [0, ). Integrating it we obtain s, and with this s, the
potential (8) produces an extremal metric in some subset of the blow-up at one
point of CP” minus a CP"™!, so long as w(0) = p > 0. Notice that in the
resulting differential equation, the parameter ¢ = w(0) is free.

With a positive initial condition p, the solution to (10) remains positive for
any u in [0, a). This is so because if w(u) were zero at one positive value of u,
both w(u) and w(u) would be zero at that point and, by uniqueness of solutions
of differential equations, w(u) would have to be identically zero.

If the constant c is strictly positive, the solution w(u) cannot go to +oo in
finite time. In fact, as w — +o0o and for nonzero u, the function f(u,w) is
asymptotically equals to —cuw?®/2(n + 1)(n + 2), which is a negative quantity.
Thus, for ¢ > 0 the function w is decreasing when its value is large and, con-
sequently, @ = co. So, the solution to (10) exists for u € [0,00). Under this
assumption, :i;+ uég is never zero, because if that were the case at some u,
say up, then (p = uod')(uo) would be a root of the polynomial defined by the
terms in equation (7) which do not involve ¢. By uniqueness of solutions to
differential equations, { = (o, a constant, which is a contradiction. Therefore,
$+ud = $+ud > 0, since it is so when u = 0. Consequently, V = n!é""1($+u$)
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is always positive, showing that the form w = 1904 is non-degenerate. Thus,

the function s obtained from
s(u) = pu +/ w(r)dr
0

is such that (8), translated to CP" via the coordinate system, defines a Kahler
metric in CP" — CP"~! blown-up at one point, a metric which is extremal and
has non-constant scalar curvature.

In addition to proving that the derivative of udis positive, we have shown that
this function is bounded on [0,00). Hence, limy—.oo u$ = b > a, and equation
(7) implies that u($ + u8) converges to some limit as u — oo. This limit is
necessarily zero.

For simplicity, let us set

— ___c___ n+2 A n n
P(O) = 2(n+1)(n+2)c 2n(n+1)c "+ B(+C.
Then, (7) can be written as
u("'¢ = P(().

Notice that ((0) = a and {(oco0) = b are both roots of P({). Furthermore, they
must be simple roots. The residue of (*~!/P(¢) at (o = a or (o = b can be
computed by the limit lim¢_¢, (*~1/ P'(¢). Given the value of the constants in
(9), we see that the residue at (o = a is equal to 1. Later on we shall see that
in order to extend the metric at u = oo, we need to impose a condition on the
residue at (g = b.

We next give the metric explicitly near u = co. For that we introduce a new
coordinate r = y/{ and choose a local orthonormal coframe a4,...,09,—1 for
the sphere S?*~! which coincides with dz2,dy?,...,dz?""2,dy*"~2,dy" at the
point (z1,...,2") = (1,0,...,0). Here zF = z* + iy*. Since

—iw = (¢ +ud)dz! AdZ' + ¢ d NdF,

=2
we obtain that

d¢ [ du?
0= 2 (52 usduns ) #r(at ot o).
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But

ﬁi‘ﬁ _ (dr’ _ C"dr2 _ rin d 2

dudu Wl PEQ) P
Similarly,

; P(r?)
2 _ 2
u(ogy_y = rg(,,_l)azn—l-

Therefore,

rin P(r?)
g= P(r2)dr2 + r2(n—1)ag""1 +riel+... 402 _,).

The first two summands in the expression above, should be viewed as the fiber
metric of a bundle whose base space has metric given by the last summand. This
base space is a CP"~! with a Fubini-Study metric, and as 7> — b as u — oo, the
scalar curvature is 4n(n — 1)/b. However, before we can safely conclude that,
we must show that the metric extends smoothly at co. For that, we would like

to find a new coordinate v = (r) such that the fiber metric above looks like
(1+0(v*))dv? +v*(1 + O(v*))o3, 5,

near 72 = b. Let aq be the residue of (*~!/P(¢) at (o = b. Since
r2(n—1) ap

7,‘(;75‘=;§_—b+Q(T2‘b),

with @ a regular function near b, we can choose

' r
B(r)= —ao\/T*_—ﬁ )
which implies that v = 8(r) = agv/b — r2. Since we then want P(r?)/r?(®~1 to
be of the form v?(1 + O(v?)), we must have

r2-b
ag(b - T.Z) = as )
which then implies that ag = —1. Hence, the constants in (9) must be related
to ¢ and b by
A
_bn-l — ¢ bn+l — bn—l B
2(n + 1) an’ TP T
from which we obtain
n+1 n41 n _ — 2"
2q__n c " 4a _izb_)+n 1((n 2) 2071
p* b*—a"|2 n+1 n n a

—(n+ 1)b"'1] :
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This permits to express the constants in (9) in terms of the cohomological data
a and b, and the dimension n. Fixing these data fix also the free parameter gq.
With this restriction on the residue at o = b, the metric constructed extends
smoothly across u = 0o (because it does so across v = 0 which is equivalent).
Adding a CP™! at oo, we complete the blow-up of C* at 0 to obtain the
manifold CP", blown-up at one point, provided with a metric which is extremal

and has non-constant scalar curvature. | |

It is easy to see that the volume of the compact manifold above is just
2"vol(S?"~1)(b" — a™)/n, where vol(S**~1) is the volume of the (2n — 1)-
dimensional unit sphere.

If instead of searching for potentials as in (8), we look for potentials of the
form

#(u) = alogu + u*s(u), a >0,

with k a positive integer and s(0) > 0, we then obtain metrics with the properties
above on L¥. Here, L 5 CP""! is the universal line bundle obtained by blowing-
up C" at the origin (notice that the previous construction corresponds to k = 1).
Adding a point at infinity on each fiber gives the result on a compact manifold.

Details are left to the interested reader.
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