
ISRAEL JOURNAL OF MATHEMATICS l'S (1992), 85-93 

A NOTE ON EXTREMAL METRICS OF 
NON-CONSTANT SCALAR CURVATURE 

BY 

SANTIAGO R .  SIMANCA 

Department of Mathematics 

SUNY Stony Brook, NY I179~, USA 

ABSTRACT 

By working in C n with potentials of the form a log u + s(u) ,  u the square 

of the distant  to the origin, we obtain extremal K£hler metrics of non- 

constant  scalar curvature on the blow-up of C n at 0. We then show that  

these metrics can be completed at c¢ by adding a CP n-1  , and reobtain 

the extremal K£hler metrics of non-constant  scalar curvature  constructed 

by Calabi on the blow-up of CP n at one point. A similar construct ion 

produces this type of metrics on other bundles over CP n-1  . 

Let (M, J)  be a complex n-manifold and g a Hermitian Riemannian metric on 

M, that is to say, a metric such that w(X, Y) := g(JX, Y) is skew-symmetric. 

The metric is said to be K~hler if the 2-form w is closed, or equivalently, if 

the almost-complex structure tensor J is parallel with respect to the metric 

connection V. The differential form w is then called the K£1aler form, and its 

cohomology class [w] e H2DR(M) is called the K£hler class. 

By complex multi-lineavity, we may extend the metric g, the Levi-Civita 

connection V and the curvature tensor 7~ to the complexified tangent bundle 

C ® TM. Since C ® TM decomposes into the +i-eigenspaces of J, C ® T M  = 

T 1,°M ~ T °'l M, we can express any tensor field or differential operator in terms 

of the corresponding decomposition. If ( z l , . . . ,  z n) is a holomorphic coordinate 

system on M, we get induced bases {~7-~, } °  and {o-~z~a := b--~}a for TI,°M and 

T°,IM, respectively, and if, for example, we express the metric g in terms of 
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0 0 ) ,  
this basis by setting g ~  := g 0"~" 0 z  ~ where the indices #, v range over 

{1 , . . . ,  n, i , . . . ,  fi}, it follows from the Hermiticity condition that gjk = g ~  = 0, 

and that w = wj~dzJ A d'5 k = igj~dzJ A d5 k. 

The Ricci form p is defined in terms of the Ricci tensor r of g by p(X, Y) = 

r(JX,  Y). It is the curvature of the anti-canonical line bundle ~-1 := A" TI '°M, 

so that the components of the Ricci tensor are given by 

6 2 

r i ~ = - i P j ~ =  OzjO~k l°gdet(gv~)" 

The scalar curvature is, by definition, the trace a = r~ = 2g/krj~ of the Ricci 

tensor, and can be conveniently calculated by using the formula 

(I) a w ^n = 2 n  p A w ^ ( . - 1 ) ,  

which follows from the Lefschetz decomposition of (1,1)-forms. For M compact, 
/M An 

using the fact that the metric volume-form is given by dvol a = n--T-. ' this has 

the remarkable consequence that 

L 4r  
(7" d v o l g  - -  ( n  --  1)] C1 U [w] U ( n - 1 ) .  

f 1 
Since, on the other hand, • dvolg = ~-~l[w] un, we conclude that the average 

J M  # ~ ". 

scalar curvature is a topological invariant, in the sense that it only depends on 

the K~hler class [w] and the homotopy class of the complex-structure tensor J.  

Let .M[~, l be the set of all K/flaler metrics on M with fixed Kfihler class [w]. 

Two metrics in this space will have KLlaler forms which differ from one another 

by iO-O~, where ~ is a real valued function on M. This clearly indicates how to 

topologize A4[~]. A curve w t in this space, with w ° = w, is thus given by 

(2) ~ t  = OJi~ -[- i ~ i ~ O t  , 

where ~t is a smooth valued function which can be taken as zero when t = 0. 

The notion of extremal metric was introduced by Calabi [Ca2] as critical 

points of the functional 

A4[~ s , R  

g ' L a ~  dvol, 
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If we consider a one-parameter family of metrics as in (2) with qot It=0 = 0 and 

~t [t=0 = u, since the variation of ag is equal to 

- ~ ( A  ~ + 2r- VV)u ,  

where the dot denotes contraction, it follows, using the Bianchi identities, that 

the derivative of S at g in the direction of OiOyu is just 

= fM  g((OO#)*OO#)udv°b, DS9 

where 0 # is the operator ¢ ~-~ (0¢) #,  # the isomorphism of the complexified 

cotangent and tangent bundles induced by g. The following result follows. 

TItEOREM 1 (Calabi [Ca2]): A KiiJaler metric  is ex tremal  i f f  the vector ~eld 

O# a 9 is holomorphic. 

It is then rather obvious that a constant scalar curvature K~ihler metric is 

extremal and that the two type of metrics coincide if the manifold admits no 

holomorphic vector fields. 

We would like now to show examples of extremal metrics which do not have 

constant scalar curvature. Such examples have been constructed by Calabi 

[Ca1] and live in the blow-up of CP n at one point. We hope that our approach 

illuminates further Calabi's construction, as some of the technicalities of his 

construction are eliminated in the approach that we follow here. 

We initially search for this kind of metrics on the non-compact manifold C" 

and demand that they be U(n) symmetric. We then proceed as in [Si] and 

consider a K£hler potential ¢ in C" which is only a function of u = z151 + . . .  + 

ZnSn. The (1, 1)-form 

w = i 00¢  

is the K/ihler form of a K/~hler metric. If we let the expression 

w ̂ "  = i " V d z  I A d-~ 1 A d z  2 A d2 2 A . . .  A d z "  A d-~" 

define the function V, then the Ricei form p is given by 

p = -iO01og V . 
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The symmetry of our setting permits to carry the computations on z 2 = z ~ = 

. . . .  z" = 0, and as explained in [Si]* the scalar curvature equation (1) is just 

(3) tr~(~+u~)=-2~(~+u~b)-2(n-1)(b(~+u~), 
where ~b = log V. This is clearly equivalent to 

1 d (~u"~"  + 2 n u " ~ " - ' ~ )  
- ( u d ) "  du  

Consequently, the vector field cg#a is 

a 
0%= • ~ + - j ~ _  . ~V~(.~).J. 

The metric will be extremai iff 

d b 
q D 0 ,  

from which it follows that 

(4) ~ = c  (u~), 

for some constant c. The case c = 0 was considered in [Si], taking advantage of 

the formula above for O. We concentrate here in the case where c # 0, i.e., the 

case of non-constant scalar curvature. Integration of (4), together with the use 

of (3), results into the equation 

for A a constant of integration. This equation can be written as 

where ~ = u~, rl = u~, respectively. Thus, 

c .4 
1)~ ~ = B~1-- ( 6 )  T /+  2 ( n  + 2 n  ¢ + ' 

where B is another constant of integration. If we now write V in terms of ~ and 

its derivative, we conclude that 

* The conventions used here are slightly different than the ones in [Si], thus ex- 
plaining the differences in the equations. 
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Plugging this into the previous expression and writing the result as an equation 

for (, we obtain 

d c 1).¢.+,~ = _ A ~ . ~  + B~,  
d---u (u~n-l~) - n¢"-1~ + 2(n + 

which itself produces 

c A 
(7) u ~ " - 1 ~ - ¢ " + 2 ( n + 1 ) ( n + 2 ) ¢  " + 2 =  2 n ( n + l ) ¢  " + I + B ¢ + C ,  

for yet another constant of integration C. 

In order to produce metrics in the blow-up of CP" at one point, we suppose 

that ~b is a function of the form 

(8) ¢(u) = alogu--Fs(u),  a > O,  

where in principle we only required s ( u )  to be C 2 (later on we shall see that 

equation (7) on such a function will imply that s is smooth). This will produce 

a metric on the blow-up of C'* at 0, a coordinate neighborhood of the manifold 

in question. Notice that V = n[¢" - l (~  + u¢). Then, if we set 

~(O)=p, ~(O)=q, 

the constants A, B and C are completely determined by (5), (6), and (7) in 

terms of these values. We list these results for convenience: 

(9) 

a - p-5- - ca, 

a "-1 2q c 2 
B = - - - - ~  2(n - 1) q- ~-a  -F 2(n-+-~)a , 

c - ~ ¥ T  2 ( . - 2 ) + ~ a + 2 ( n + 2 ) a  . 

For ~b as in (S) we have ~ = u¢ = a q- uh. If we write equation (7) in terms of 

s and perform some simplifications, we obtain 

(a + uh)"-lu2~ = C 

2(. ~ I)(. + 2) ((" + ~)"+~ - ""+~ - (" + 2)""÷~) 

2 . ( .  + 11 ((a + u~)"+' - a"+l - (" + lla"u~) 
-{- ( ( a  -l- u s )  n --  a n --  n a n - l u s )  --  u ~ ( ( a  -F u s )  n - 1  - a n - l ) .  
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Setting w = ~ this becomes 

= c ( (a  + u w ) - + 2  _ : + 2  _ + 2 ) : + l u w )  

2(n % 1)(n + 2)u2(a % uw) "-1 
A((a + uw) "+1 - a "+1 - (n + 1)a"uw) 

(10) 2n(n + 1)u2(a + uw) "-1 
a(a + uw) n-' - -  a" - (n - 1)a"-'uw 

+ 
u2(a + uw) "-1 

= f(u, w), 

where we let the expression define the function f(u, w). 

THEOREM 2: The blow-up of CP" at one point carries ext rema/metr ics  of 

non-constant scalar curvature. 

Proof: Let C" be an affine coordinate chart, and assume that the origin is the 

blown-up point. Proceeding as above, we search for a potential of the form (8) 

which will produce extremal metrics of non-constant scalar curvature. As the 

function f(u, w) is smooth, the resulting equation (10) for w = h has a unique 

solution in a neighborhood of u = 0, provided one supplies an initial condition 

w(0) = h(0) = p. There is in fact one such solution which is smooth and defined 

on a maximal domain [0, a). Integrating it we obtain s, and with this s, the 

potential (8) produces an extremal metric in some subset of the blow-up at one 

point of CP" minus a CP n- l ,  so long as w(0) = p > 0. Notice that in the 

resulting differential equation, the parameter q = tb(0) is free. 

With a positive initial condition p, the solution to (10) remains positive for 

any u in [0, a). This is so because if w(u) were zero at one positive value of u, 

both w(u) and tb(u) would be zero at that point and, by uniqueness of solutions 

of differential equations, w(u) would have to be identically zero. 

If the constant c is strictly positive, the solution w(u) cannot go to +oo in 

finite time. In fact, as w --* +oo and for nonzero u, the function f(u, w) is 

asymptotically equals to -cuw3/2(n + 1)(n + 2), which is a negative quantity. 

Thus, for c > 0 the function w is decreasing when its value is large and, con- 

sequently, a = oo. So, the solution to (10) exists for u E [0, co). Under this 

assumption, ¢ + u¢ is never zero, because if that were the case at some u, 

say u0, then ~0 = uo¢(Uo) would be a root of the polynomial defined by the 

terms in equation (7) which do not involve ~. By uniqueness of solutions to 

differential equations, ~ = C0, a constant, which is a contradiction. Therefore, 

¢ + u ¢  = h+ug > 0, since it is so when u = 0. Consequently, V = n!¢"-l(¢+u¢) 
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is always posit ive,  showing tha t  the form w = i0-0¢ is non-degenerate .  Thus,  

the funct ion s ob ta ined  f rom 

4u) = pu + w(,-)e,- 

is such t ha t  (8), t r ans la ted  to CP  n via the coordinate  sys tem,  defines a K ~ l e r  

met r ic  in CP  n - CP ~-1 b lown-up at one point ,  a metr ic  which is ex t remal  and  

has  non-cons tan t  scalar curvature .  

In addi t ion  to proving tha t  the derivat ive of u¢  is posit ive,  we have  shown tha t  

this funct ion is bounded  on [0, co). Hence, l imu--.~ u¢  = b > a, and  equat ion 

(7) implies tha t  u(~ + u~) converges to some limit as u ~ ~ .  This  limit is 

necessari ly zero. 

For simplicity, let us set 

c A 
~.+2 1) (n+l + ~,, + Be + C. P(~)= 2(n+1)(n+2) 2n(n+ 

Then,  (7) can be wr i t ten  as 

. ¢ - - , ~  = P(¢) .  

Notice tha t  ~(0) -- a and  ( (oo)  -- b are bo th  roots  of P(~) .  Fur thermore ,  they 

mus t  be  simple roots.  The  residue of ¢ , , - 1 / p ( ( )  at ~0 -- a or ~0 = b can be 

compu ted  by  the  limit lim¢--.¢0 ( n - 1 / p ' ( ~ ) .  Given the value of the cons tants  in 

(9), we see tha t  the residue at  (0 = a is equal to 1. Later  on we shall see tha t  

in order  to ex tend  the metr ic  at u = ~ ,  we need to impose  a condit ion on the 

residue a t  ~0 = b. 

We next  give the metr ic  explicitly near  u = oo. For tha t  we int roduce a new 

coordinate  r = x/~ and choose a local o r thonormal  coframe a l , . . . , a 2 n - 1  for 

the sphere  S 2n-1 which coincides wi th  d x  2, dy2,  . . . , d x  2'*-2,  d y  2 " - 2 ,  d y  I at  the 

point  ( z l , . . .  , z " )  = ( 1 , 0 , . . .  ,0). Here z k = x k + i y  k. Since 

- i ~  = (~ + u~)~z I ^ ~ '  + ¢ ~ ~z~ ^ ~ ,  
j----2 

we obta in  tha t  

;.< ) g m_ ~l_ llff~n_ 1 JI- r2 (  IT2 J v . . .  Jv ~T22n_2) • 
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But  

Similarly, 

Therefore,  

d~ du 2 

du 4u 

~ dr 2 ~n dr2 r 2n 

- - -  - = PT ) 

P ( ~ )  ~ 
u~a~, ,-1-  ~ )  2,,-1. 

r2n ~O.2n_lP(r2)  2 + r2(a~ + + a 2 
= p - - ~  d~2 + - . .  2 , - 2 ) .  

The  first two summands  in the expression above, should be viewed as the fiber 

metr ic  of  a bundle  whose base space has metr ic  given by the last summand .  This 

base space is a CP  " -1  with a Fubini-Study metric,  and as r 2 ---* b as u ~ ~ ,  the 

scalar curvature  is 4n(n - 1)/b. However, before we can safely conclude that ,  

we must  show tha t  the metric extends smoothly  at oo. For that ,  we would like 

to find a new coordinate  v = j3(r) such that  the fiber metric above looks like 

(1 + O(v~))dv ~ + ,~(1 + 0(, ,~))~,,_~ , 

near  r 2 = b. Let ao be the residue of ~,-1/p(~)  at ~0 = b. Since 

r 2 ( n - i )  ao 
P ( r  2) - r ¢ - - b  + Q ( r 2 - b ) '  

with Q a regular  function near b, we can choose 

~'(~) = - a o  " 

which implies tha t  v = g( r )  = a0 x/b - r ~. Since we then want  P(r 2)/r 2("-~) to 

be of the form v2(1 + O(v2)), we must  have 

r 2 -- b 
a2o(b- r 2) _ - - ,  

a0 

which then implies tha t  a0 = - 1 .  Hence, the constants  in (9) must  be related 

to c and b by 

C 
- b " - I  - 1) b"+l - A b "  nb"-I 

2(n + 2n + + B ,  

f rom which we obtain 

2 q _  n [c  b ~ + l + a  "+1 

- (n  + 1 ) b " - l [  . 
J 

a b n ) + n - l ( ( n - 2 ) b  n + 2 a n _ , )  

n n a 
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This permits to express the constants in (9) in terms of the cohomological data 

a and b, and the dimension n. Fixing these data fix also the free parameter q. 

With this restriction on the residue at ¢0 = b, the metric constructed extends 

smoothly across u = oo (because it does so across v = 0 which is equivalent). 

Adding a CP n-1 at oo, we complete the blow-up of C n at 0 to obtain the 

manifold CP",  blown-up at one point, provided with a metric which is extremal 

and has non-constant scalar curvature. II 

It is easy to see that the volume of the compact manifold above is just 

2"vol(S2'*-l)(b n - an)/n ,  where vol(S 2n-1) is the volume of the (2n - 1)- 

dimensional unit sphere. 

If instead of searching for potentials as in (8), we look for potentials of the 

form 

¢(u)  = s l o g  u + a > 0 ,  

with k a positive integer and 8(0) > O, we then obtain metrics with the properties 

above on L k. Here, L -~ CP n-1 is the universal line bundle obtained by blowing- 

up C" at the origin (notice that the previous construction corresponds to k = 1). 

Adding a point at infinity on each fiber gives the result on a compact manifold. 

Details are left to the interested reader. 
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